Microsoft 70-779 Exam

Analyzing and Visualizing Data with Microsoft Excel

Questions \& Answers
 Demo

Version: 9.2

Question: 1

Your company has sales offices in several cities.
You create a table that represents the amount of sales in each city by month as shown in the exhibit.

	A	B	C	D	E	F	G	H
1	Cily	January	February	March	April	May	June	July
2	Montreal	20.00	90.00	170.00	200.00	200.00) 400.00	420.00
3	Toronto	0.00	30.00	75.00	60.00	85.00	190.00	203.00
4	Miami	0.00	25.00	105.00	75.00	70.00	155.00	140.00
5	Madrid	220.00	440.00	650.00	610.00	424.00	500.00	542.00
6	Los Angeles	0.00	10.00	25.00	55.00	40.00	45.00	75.00
7	Brussels	3,400.00	3,000.00	3,300.00	3,700.00	2,300.00	2,700.00	2,340.00
8	Antwerp	2,500.00	2,350.00	2,300.00	2,400.00	1,800.00	1,970.00	(1,690.00
9	Tel Aviv	100.00	150.00	190.00	230.00	260.00	230.00	115.00
10	Melbourne	90.00	75.00	140.00	(120.00	() 110.00	(1) 175.00	65.00

You need to ensure that all values lower than 250 display a red icon. The solution must ensure that all values greater than 500 display a green icon.
Solution: You create a measure, and then define a target value.
Does this meet the goal?
A. Yes
B. No

Answer: B

Question: 2

Note: This question is part of a series of questions that present the same scenario. Each question in the series contains a unique solution that might meet the stated goals. Some question sets might have more than one correct solution, while others might not have a correct solution.
After you answer a question in this section, you will NOT be able to return to it As a result, these questions will not appear in the review screen.
Your company has sales offices in several cities.
You create a table that the represents the amount of sales in each city by month as shown in the exhibit.

	A	B	C	D	E	F	G	H
1	Cilly	January	February	March	April	May	June	July
2	Montreal	20.00	90.00	170.00	200.00	200.00	400.00	420.00
3	Toronto	0.00	30.00	75.00	60.00	85.00	190.00	00
4	Miami	0.00	25.00	105.00	75.00	- 70.00	155.00	140.00
5	Madrid	220.00	440.00	650.00	610.00	424.00	- 500.00	542.00
6	Los Angeles	0.00	10.00	25.00	55.00	40.00	45.00	75.00
7	Brussels	3,400.00	3,000.00	3,300.00	3,700.00	2,300.00	2,700.00	2,340.00
8	Antwerp	2,500.00	2,350.00	2,300.00	2,400.00	1,800.00	1,970.00	1,690.00
9	Tel Aviv	100.00	150.00	190.00	230.00	260.00	- 230.00	115.00
10	Melbourne	90.00	75.00	140.00	120.00	- 110.00	- 175.00	65.00

You need to ensure that alt values lower than 250 display a red icon. The solution must ensure that all values greater than 500 display a green icon.
Solution: You create a new conditional formatting rule that uses the Format only cells that contain rule type.
Does this meet the goal?
A. Yes
B. No

Answer: A

Question: 3

Note: This question is part of a series of questions that present the same scenario. Each question in the series contains a unique solution that might meet the stated goals. Some question sets might have more than one correct solution, while others might not have a correct solution.
After you answer a question in this section, you will NOT be able to return to it. As a result these questions will not appear in the review screen.
Your company has sales offices in several cities.
You create a table that represents the amount of sales in each city by month as shown in the exhibit.

You need to ensure that all values lower than 250 display a red icon. The solution must ensure that all values greater than 500 display a green icon.
Solution: You modify the conditional formatting rule, and then set a new value for the yellow icon.
Does this meet the goal?
A. Yes
B. No

Answer: B

Question: 4

Note: This question is part of a series of questions that present the same scenario. Each question in the series contains a unique solution that might meet the stated goals. Some question sets might have more than one correct solution, while others might not have a correct solution.
After you answer a question in this section, you will NOT be able to return to it. As a result these questions will not appear in the review screen.
You have the following data.

OrderDate	OrderNumber	ProductName	OrderQuantity
$1 / 28 / 2018$	998989	Product1	10
$1 / 28 / 2018$	998990	Product1	22
$1 / 28 / 2018$	998991	Product2	21
$1 / 29 / 2018$	998992	Product3	43
$1 / 29 / 2018$	998993	Product2	56
$1 / 29 / 2018$	998994	Product3	12

You need to retrieve a list of the unique ProductName entries.
Solution: Open the Advanced Filter dialog box, select Filter the list, in-place, and then select Unique records only.
Does this meet the goal?
A. Yes
B. No

Answer: A

Question: 5

Note: This question is part of a series of questions that present the same scenario. Each question in the series contains a unique solution that might meet the stated goals. Some question sets might have more than one correct solution, while others might not have a correct solution.
After you answer a question in this section, you will NOT be able to return to it. As a result these questions will not appear in the review screen.
You have the following data.

OrderDate	OrderNumber	ProductName	OrderQuantity
$1 / 28 / 2018$	998989	Product1	10
$1 / 28 / 2018$	998990	Product1	22
$1 / 28 / 2018$	998991	Product2	21
$1 / 29 / 2018$	998992	Product3	43
$1 / 29 / 2018$	998993	Product2	56
$1 / 29 / 2018$	998994	Product3	12

You need to retrieve a list of the unique ProductName entries.
Solution: Create a PivotTable that uses the ProductName field in the Values area.

Does this meet the goal?
A. Yes
B. No

Answer: B

Question: 6

Note: This question is part of a series of questions that present the same scenario. Each question in the series contains a unique solution that might meet the stated goals. Some question sets might have more than one correct solution, while others might not have a correct solution.
After you answer a question in this section, you will NOT be able to return to it. As a result these questions will not appear in the review screen.
You have the following data.

OrderDate	OrderNumber	ProductName	OrderQuantity
$1 / 28 / 2018$	998989	Product1	10
$1 / 28 / 2018$	998990	Product1	22
$1 / 28 / 2018$	998991	Product2	21
$1 / 29 / 2018$	998992	Product3	43
$1 / 29 / 2018$	998993	Product2	56
$1 / 29 / 2018$	998994	Product3	12

You need to retrieve a list of the unique ProductName entries.
Select the ProductName column, and then click Group on the Data tab.
Does this meet the goal?
A. Yes
B. No

Answer: B

Question: 7

Note: This question is part of a series of questions that use the same scenario. For your convenience, the scenario is repeated in each question. Each question presents a different goal and answer chokes, but the text of the scenario is the same in each question in this series.
Start of repeated scenario
You are creating reports for a car repair company. You have four datasets in Excel spreadsheets. Four workbook queries load the datasets to a data model. A sample of the data is shown in the Data Sample exhibit.
Data Sample exhibit:

DailyRepairs

| Date | WorkshopID | RepairTypeID | Hours | Revenue | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $2016-10-01$ | 1 | 4 | 2 | $£$ | 432 |
| $2016-10-01$ | 6 | 8 | 16 | $£$ | 4,144 |
| $2016-10-01$ | 3 | 6 | 12 | $£$ | 564 |
| $2016-10-01$ | 6 | 5 | 4 | $£$ | 1,680 |
| $2016-10-01$ | 5 | 4 | 12 | $£$ | 1,968 |
| $2016-10-01$ | 3 | 4 | 15 | $£$ | 854 |
| $2016-10-01$ | 2 | 1 | 0 | $£$ | 3,030 |
| $2016-10-01$ | 1 | | | | |

Workshops

ID	Workshop Name \sim	Workshop Manager	Manager Since	IsLatest
1	Cambridge	Alex Hankin	$2012-11-10$	1
2	Bedford	Ben Miller	$2015-04-22$	1
3	Camden	Kari Furse	$2015-08-29$	1
4	Belsize	Ron Gabel	$2016-02-14$	1
5	Reading	Josh Edwards	$2009-11-07$	1
6	Kilburn	Karen Toh	$2012-02-25$	1
6	Kilburn	Eva Corets	$2009-06-06$	0

Dates

ID F Date	Month	Year	MonthID	
20160101	$2016-01-01$	Jan '16	2016	201601
20160102	$2016-01-02$	Jan '16	2016	201601
20160103	$2016-01-03$	Jan '16	2016	201601
20160104	$2016-01-04$	Jan '16	2016	201601
20160105	$2016-01-05$	Jan '16	2016	201601
20160106	$2016-01-06$	Jan '16	2016	201601
20160107	$2016-01-07$	Jan '16	2016	201601
20160108	$2016-01-08$	Jan '16	2016	201601
20160109	$2016-01-09$	Jan '16	2016	201601

RepairTypes

ID	Repair Type
1	Engine
2	Radiator
3	Gearbox
4	Clutch
5	Brakes
6	Tires
7	Bodywork
8	Windscreen
9	Other

The data model is shown in the Data Model exhibit. (Click the Exhibit button.)

The tables in the model contain the following data:
DailyRepairs has a log of hours and revenue for each day, workshop, and repair type. Every day, a log entry is created for each workshop, even if no hours or revenue are recorded for that day. Total Hours and Total Revenue column.
Workshops have a list of all the workshops and the current and previous workshop managers. The format of the Workshop Manager column is always Firstname Lastname. A value of 1 in the IsLatest column indicates that the workshop manager listed in the record is the current workshop manager.
RepairTypes has a list of all the repair types
Dates has a list of dates from 2015 to 2018
End of repeated scenario.
When you attempt to create a relationship between DailyRepairs and Workshops, Power Pivot generates the following error message: "The relationship cannot be created because each column contains duplicate values. Select at least one column that contains only unique values".
You need to ensure that you can create a valid relationship between the tables.
What should you do?
A. In the Power Pivot model, change the data type for Workshop[ID] to General
B. In the workbook query for Workshops, add an index column
C. In the Power Pivot model, change the Table Behavior setting for Workshops
D. In the workbook query for Workshops, filter [IsLatest] to equal 1

Answer: C

Explanation:
References: https://msdn.microsoft.com/en-us/library/hh560544(v=sql.110).aspx

Question: 8

DRAG DROP

Note: This question is part of a series of questions that use the same scenario. For your convenience, the scenario is repeated in each question. Each question presents a different goal and answer choices, but the text of the scenario is the same in each question in this series.
Start of repeated scenario.
You are creating reports for a car repair company. You have four datasets in Excel spreadsheets. Four workbook queries load the datasets to a data model. A sample of the data is shown in the Data Sample exhibit. (Click the Exhibit button.)
Data Sample exhibit:

DailyRepairs

| Date | WorkshopID | RepairTypeID | Hours | Revenue | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $2016-10-01$ | 1 | 4 | 2 | $£$ | 432 |
| $2016-10-01$ | 6 | 8 | 16 | $£$ | 4,144 |
| $2016-10-01$ | 3 | 6 | 12 | $£$ | 564 |
| $2016-10-01$ | 6 | 5 | 4 | $£$ | 1,680 |
| $2016-10-01$ | 5 | 4 | 12 | $£$ | 1,968 |
| $2016-10-01$ | 3 | 4 | 14 | $£$ | 854 |
| $2016-10-01$ | 2 | 1 | 0 | $£$ | 3,030 |
| $2016-10-01$ | 1 | 4 | $£$ | - | |

Workshops

ID	Workshop Name \rightarrow	Workshop Manager \rightarrow	Manager Since	IsLatest
1	Cambridge	Alex Hankin	$2012-11-10$	1
2	Bedford	Ben Miller	$2015-04-22$	1
3	Camden	Kari Furse	$2015-08-29$	1
4	Belsize	Ron Gabel	$2016-02-14$	1
5	Reading	Josh Edwards	$2009-11-07$	1
6	Kilburn	Karen Toh	$2012-02-25$	1
6	Kilburn	Eva Corets	$2009-06-06$	0

Dates

ID -	Date	Month	Year	MonthID
20160101	2016-01-01	Jan '16	2016	201601
20160102	2016-01-02	Jan '16	2016	201601
20160103	2016-01-03	Jan '16	2016	201601
20160104	2016-01-04	Jan '16	2016	201601
20160105	2016-01-05	Jan '16	2016	201601
20160106	2016-01-06	Jan '16	2016	201601
20160107	2016-01-07	Jan '16	2016	201601
20160108	2016-01-08	Jan '16	2016	201601
20160109	2016-01-09	Jan '16	2016	201601

RepairTypes

ID	Repair Type
1	Engine
2	Radiator
3	Gearbox
4	Clutch
5	Brakes
6	Tires
7	Bodywork
8	Windscreen
9	Other

The data model is shown in the Data Model exhibit. (Click the Exhibit button.)

The tables in the model contain the following data:
DailyRepairs has a log of hours and revenue for each day, workshop, and repair type. Every day, a log entry is created for each workshop, even if no hours or revenue are recorded for that day. Total Hours and Total Revenue column.
Workshops have a list of all the workshops and the current and previous workshop managers. The format of the Workshop Manager column is always Firstname Lastname. A value of 1 in the IsLatest column indicates that the workshop manager listed in the record is the current workshop manager.
RepairTypes has a list of all the repair types
Dates has a list of dates from 2015 to 2018
End of repeated scenario.
You need to create a PivotChart that displays the month, the hours of the month, and the hours of the previous month, as shown in the following exhibit.

Row Labels	Total Hours	Total Hours Last Month
Oct '16	9,265	
Nov '16	9,152	9,265
Dec '16	9,196	9,152
Jan '16	9,392	9,196
Feb '16	8,809	9,392
Mar '16	7,585	8,809
Grand Total	$\mathbf{5 3 , 3 9 9}$	$\mathbf{5 3 , 3 9 9}$

Which DAX formula should you use for the Total Hours Last Month measure? To answer, drag the appropriate fields to the correct targets. Each value may be used once, more than once, or not at all. You may need to drag the split bar between panes or scroll to view content. NOTE: Each correct selection is worth one point.

Values

1
DATESBETWEEN

NULL

Answer Area

(ISBLANK ([Total Hours]), Value
(), CALCULATE ([Total Hours], Value
(tblDates[Date], Value , MONTH)))

Answer:

IF (ISBLANK[(Total Hours]),BLANK(), CALCULATE([total Hours], DATEADD(tbIDates(Date), -1,MONTH)))
Question: 9
HOTSPOT

Note: This question is part of a series of questions that use the same scenario. For your convenience, the scenario is repeated in each question. Each question presents a different goal and answer choices, but the text of the scenario is the same in each question in this series.
Start of repeated scenario.
You are creating reports for a car repair company. You have four datasets in Excel spreadsheets. Four workbook queries load the datasets to a data model. A sample of the data is shown in the Data Sample exhibit. (Click the Exhibit button.)
Data Sample exhibit:
DailyRepairs

| Date | WorkshopID | RepairTypeID | Hours | Revenue | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $2016-10-01$ | 1 | 4 | 2 | $£$ | 432 |
| $2016-10-01$ | 6 | 8 | 16 | $£$ | 4,144 |
| $2016-10-01$ | 3 | 6 | 12 | $£$ | 564 |
| $2016-10-01$ | 6 | 4 | 4 | $£$ | 1,680 |
| $2016-10-01$ | 5 | 4 | 12 | $£$ | 1,968 |
| $2016-10-01$ | 3 | 4 | 15 | $£$ | 854 |
| $2016-10-01$ | 2 | 1 | 0 | $£$ | 3,030 |
| $2016-10-01$ | 1 | 4 | | | |

Workshops

ID \sim	Workshop Name \sim	Workshop Manager \sim	Manager Since	IsLatest
1	Cambridge	Alex Hankin	$2012-11-10$	1
2	Bedford	Ben Miller	$2015-04-22$	1
3	Camden	Kari Furse	$2015-08-29$	1
4	Belsize	Ron Gabel	$2016-02-14$	1
5	Reading	Josh Edwards	$2009-11-07$	1
6	Kilburn	Karen Toh	$2012-02-25$	1
6	Kilburn	Eva Corets	$2009-06-06$	0

Dates

ID	Date	Month	Year	MonthD
20160101	$2016-01-01$	Jan '16	2016	201601
20160102	$2016-01-02$	Jan '16	2016	201601
20160103	$2016-01-03$	Jan '16	2016	201601
20160104	$2016-01-04$	Jan '16	2016	201601
20160105	$2016-01-05$	Jan '16	2016	201601
20160106	$2016-01-06$	Jan '16	2016	201601
20160107	$2016-01-07$	Jan '16	2016	201601
20160108	$2016-01-08$	Jan '16	2016	201601
20160109	$2016-01-09$	Jan '16	2016	201601

RepairTypes

ID	Repair Type
1	Engine
2	Radiator
3	Gearbox
4	Clutch
5	Brakes
6	Tires
7	Bodywork
8	Windscreen
9	Other

The data model is shown in the Data Model exhibit. (Click the Exhibit button.)

The tables in the model contain the following data:
DailyRepairs has a log of hours and revenue for each day, workshop, and repair type. Every day, a log entry is created for each workshop, even if no hours or revenue are recorded for that day. Total Hours and Total Revenue column.
Workshops have a list of all the workshops and the current and previous workshop managers. The format of the Workshop Manager column is always Firstname Lastname. A value of 1 in the IsLatest column indicates that the workshop manager listed in the record is the current workshop manager.
RepairTypes has a list of all the repair types
Dates has a list of dates from 2015 to 2018
End of repeated scenario.
To the Dates table, you need to add a calculated column named Months Ago. Months Ago must display the number of calendar months before the current month. For example, if the current date is July 10, 2017, the Value of Months Ago will be 0 for all the dates in July 2017, 1 for all the dates in June 2017, and 2 for all the dates in May 2017.
How should you complete the DAX formula? To answer, select the appropriate options in the answer area.
NOTE: Each correct selection is worth one point.

Answer Area

Answer:

Answer Area

Box 1: MONTH
Box 2: TODAY
References:
https://msdn.microsoft.com/en-us/library/ee634914.aspx
https://msdn.microsoft.com/en-us/library/ee634567.aspx
https://msdn.microsoft.com/en-us/library/ee634554.aspx

Question: 10

Note: This question is part of a series of questions that use the same scenario. For your convenience, the scenario is repeated in each question. Each question presents a different goal and answer choices, but the text of the scenario is the same in each question in this series.
Start of repeated scenario.
You are creating reports for a car repair company. You have four datasets in Excel spreadsheets. Four workbook queries load the datasets to a data model. A sample of the data is shown in the Data Sample exhibit. (Click the Exhibit button.)
Data Sample exhibit:

DailyRepairs

| Date | WorkshopID | RepairTypeID | Hours | Revenue | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $2016-10-01$ | 1 | 4 | 2 | $£$ | 432 |
| $2016-10-01$ | 6 | 8 | 16 | $£$ | 4,144 |
| $2016-10-01$ | 3 | 6 | 12 | $£$ | 564 |
| $2016-10-01$ | 6 | 5 | 4 | $£$ | 1,680 |
| $2016-10-01$ | 5 | 4 | 12 | $£$ | 1,968 |
| $2016-10-01$ | 3 | 4 | 15 | $£$ | 854 |
| $2016-10-01$ | 2 | 1 | 0 | $£$ | 3,030 |
| $2016-10-01$ | 1 | | | | |

Workshops

ID	Workshop Name \sim	Workshop Manager	Manager Since	IsLatest
1	Cambridge	Alex Hankin	$2012-11-10$	1
2	Bedford	Ben Miller	$2015-04-22$	1
3	Camden	Kari Furse	$2015-08-29$	1
4	Belsize	Ron Gabel	$2016-02-14$	1
5	Reading	Josh Edwards	$2009-11-07$	1
6	Kilburn	Karen Toh	$2012-02-25$	1
6	Kilburn	Eva Corets	$2009-06-06$	0

Dates

ID F Date	Month	Year	MonthID	
20160101	$2016-01-01$	Jan '16	2016	201601
20160102	$2016-01-02$	Jan '16	2016	201601
20160103	$2016-01-03$	Jan '16	2016	201601
20160104	$2016-01-04$	Jan '16	2016	201601
20160105	$2016-01-05$	Jan '16	2016	201601
20160106	$2016-01-06$	Jan '16	2016	201601
20160107	$2016-01-07$	Jan '16	2016	201601
20160108	$2016-01-08$	Jan '16	2016	201601
20160109	$2016-01-09$	Jan '16	2016	201601

RepairTypes

ID	Repair Type
1	Engine
2	Radiator
3	Gearbox
4	Clutch
5	Brakes
6	Tires
7	Bodywork
8	Windscreen
9	Other

The data model is shown in the Data Model exhibit. (Click the Exhibit button.)

The tables in the model contain the following data:
DailyRepairs has a log of hours and revenue for each day, workshop, and repair type. Every day, a log entry is created for each workshop, even if no hours or revenue are recorded for that day. Total Hours and Total Revenue column.
Workshops have a list of all the workshops and the current and previous workshop managers. The format of the Workshop Manager column is always Firstname Lastname. A value of 1 in the IsLatest column indicates that the workshop manager listed in the record is the current workshop manager.
RepairTypes has a list of all the repair types
Dates has a list of dates from 2015 to 2018
End of repeated scenario.
You create a measure named Average Revenue Per Hour that calculates the average revenue per hour.
You need to populate a cell in a worksheet to display the Average Revenue Per Hour where Repair Type is Engine.
Which Excel formula should you use?
A. =CUBEMEMBER("ThisWorkbookDataModel", "[DailyRepairs]. [Avg Revenue Per Hour]", CUBEMEMBER ("ThisWorkbookDataModel", "[Dimensions]. [Repair Type]. [Engine]"))
B. =CUBEVALUE("ThisWorkbookDataModel", "[Measures]. [Avg Revenue Per Hour]", CUBEMEMBER ("ThisWorkbookDataModel", "[Dimensions]. [Repair Type]. [Engine]"))
C. =CUBEMEMBER("ThisWorkbookDataModel", "[DailyRepairs]. [Avg Revenue Per Hour]", CUBEMEMBER ("ThisWorkbookDataModel", "[RepairTypes]. [Repair Type]. [Engine]"))
D. =CUBEVALUE("ThisWorkbookDataModel", "[Measures]. [Avg Revenue Per Hour]", CUBEMEMBER ("ThisWorkbookDataModel", "[RepairTypes]. [Repair Type]. [Engine]"))

Answer: B

Explanation:

References:
https://support.office.com/en-us/article/cubevalue-function-8733da24-26d1-4e34-9b3a84a8f00dcbe0
https://www.tutorialspoint.com/advanced_excel_functions/advanced_excel_cube_cubemember_fu nction.htm

